ENEE236 \& 241

Analog Electronics

L2 Semiconductor Diodes

Instructor: Nasser Ismail

Diode Operating Conditions

A diode has three operating conditions:

No bias
Reverse bias
Forward bias

Diode Operating Conditions

No Bias

No external voltage is applied: $V_{D}=0 \mathrm{~V}$

There is no diode current: $I_{D}=0 \mathrm{~A}$

Only a modest depletion region exists

Diode Operating Conditions

Reverse Bias

External voltage is applied across the $p-n$ junction in the opposite polarity of the p - and n-type materials.

Diode Operating Conditions

Reverse Bias

The reverse voltage causes the depletion region to widen.

The electrons in the n-type material are attracted toward the positive terminal of the voltage source.

The holes in the p-type material are attracted toward the negative terminal of the voltage source.

Diode Operating Conditions

Forward Bias

External voltage is applied across the p-n junction in the same polarity as the p - and n type materials.

Diode Operating Conditions

Forward Bias

The forward voltage causes the depletion region to narrow.

The electrons and holes are pushed toward the $p-n$ junction.

The electrons and holes have sufficient energy to cross the $p-n$ junction

Zener Region

The Zener region is in the diode's reverse-bias region.
At some point the reverse bias voltage is so large the diode breaks down and the reverse current increases dramatically.
The maximum reverse voltage that won't take a diode into the zener region is called the peak inverse voltage or peak reverse voltage

The voltage that causes a diode to enter the zener region of operation is called the zener voltage (V_{z}).

Forward Bias Voltage

The point at which the diode changes from no-bias condition to forward-bias condition occurs when the electrons and holes are given sufficient energy to cross the p-n junction. This energy comes from the external voltage applied across the diode.

The forward bias voltage required for a:
gallium arsenide diode $\cong 1.2 \mathrm{~V}$
silicon diode $\cong 0.7 \mathrm{~V}$
germanium diode $\cong 0.3 \mathrm{~V}$

ENEE236 - Analog Electronics

Temperature Effects

As temperature increases it adds energy to the diode.

It reduces the required forward bias voltage for forwardbias conduction.

It increases the amount of reverse current in the reversebias condition.

It increases maximum reverse bias avalanche voltage.

Germanium diodes are more sensitive to temperature variations than silicon or gallium arsenide diodes.

Resistance Levels

Semiconductors react differently to DC and AC currents.
There are three types of resistance:

DC (static) resistance
AC (dynamic) resistance
Average AC resistance

DC (Static) Resistance

For a specific applied DC voltage (V_{D}) the diode has a specific current (I_{D}) and a specific resistance (R_{D}).

$$
R_{D}=\frac{V_{D}}{I_{D}}
$$

AC (Dynamic) Resistance

In the forward bias region:

$$
r_{d}^{\prime}=\frac{26 \mathrm{mV}}{I_{D}}
$$

The resistance depends on the amount of current $\left(I_{D}\right)$ in the diode.
The voltage across the diode is fairly constant (26 mV for $25^{\circ} \mathrm{C}$).

In the reverse bias region:

$$
\mathbf{r}_{\mathrm{d}}^{\prime}=\infty
$$

The resistance is effectively infinite. The diode acts like an open.

Average AC Resistance

$$
\left.r_{a v}=\frac{\Delta V_{d}}{\Delta I_{d}} \right\rvert\, \text { pt.to } p t
$$

AC resistance can be calculated using the current and voltage values for two points on the diode characteristic curve.

Diode Equation

$$
i_{D}(t)=I_{S}\left(e^{\frac{V_{D}(t)}{\eta_{T}}}-1\right)
$$

Is: Revers saturation current

$$
I s=10^{-12}, 10^{-14} \mathrm{~A}
$$

$$
\eta: \text { eta }
$$

$$
\eta=\left\{\begin{array}{c}
1 \text { for Ge } \\
2 \text { for Si (small current) } \\
1 \text { for Si (large current) }
\end{array}\right\}
$$

VT= Thermal Voltage
$\mathrm{V}_{\mathrm{T}}=\frac{T}{11600} \quad ; \mathrm{T}$ in kelvin
At Room Temp. T=300k
$\therefore \mathrm{V}_{\mathrm{T}}=25.69 \mathrm{mv}$ at Room Temp.

- The equation is a non linear equation

$$
i_{D}(t)=I_{S}\left(e^{\frac{V_{D}(t)}{\eta V_{T}}}-1\right)
$$

\therefore The Diode is non linear Device
For positive $V_{D}(t)$,

$$
i_{D}(t)=I_{S}\left(e^{\frac{V_{D}(t)}{\eta V_{T}}}\right)
$$

For negative $\mathrm{V}_{\mathrm{D}}(\mathrm{t})$

$$
i_{D}(t)=-I_{S}
$$

Diode V-I Characteristic curve

Approaches to Diode Circuit Analysis

The rectifier diode is a non linear device .
There are essentially three basic approaches to the solution of such problem :

1- The use of non linear mathematics

2- The use of graphical techniques
3 - The use of equivalent circuit (models)
1)The use of non linear mathematic (shown, but not required)

- For the circuit shown, find I_{D} and V_{D}

Silicon: $\eta=1.1$ $I \mathrm{~s}=10^{-14} \mathrm{~A}$

Since the diode is forward biased, we could approximate

$$
I_{D}=I_{S}\left(e^{\frac{V_{D}}{\eta V_{T}}}\right)
$$

Solving for $\mathrm{V}_{\mathrm{D}}=\eta \mathrm{V}_{\mathrm{T}} \ln \frac{I_{D}}{I_{S}}$
\therefore We have two equations and two unknowns

$$
\begin{aligned}
& V_{S}=R_{S} I_{D}+V_{D} \\
& .1
\end{aligned}
$$

$\mathrm{V}_{\mathrm{D}}=\eta \mathrm{V} \ln \frac{I_{D}}{I_{S}} \ldots \ldots \ldots \ldots$.

$$
\therefore \quad V_{S}=R_{S} I_{D}+\eta \mathrm{V}_{\mathrm{T}} \ln \frac{I_{D}}{I_{S}}
$$

- non linear equation

Iterative Analysis

1) Let $V_{D}=0.7 \mathrm{v}$

$$
\begin{gathered}
I \mathrm{D}=\frac{V_{S}-V_{D}}{R_{S}} \\
\mathrm{~V}_{\mathrm{D}}=\eta \mathrm{V}_{\mathrm{T}} \ln \frac{I_{D}}{I_{S}}
\end{gathered}
$$

$$
I_{D}=\frac{2-0.7}{0.1 k}=13 \mathrm{~mA}
$$

$V_{D}=0.7882392 \mathrm{v} \quad$ The error is large
2) Let $V_{D}=0.7882392 \mathrm{v}$

$$
I_{D}=12.117608 \mathrm{~mA}
$$

$V_{D}=0.7862529 \mathrm{v} \quad$ The error is small
3) Let $V_{D}=0.7862529 \mathrm{v}$

$$
I_{D}=12.137471 \mathrm{~mA}
$$

$V_{D}=0.7862991 \mathrm{~V} \quad$ The error getting smaller
4) Let $V_{D}=0.7862991 \mathrm{~V}$

$$
\begin{aligned}
& V_{D}=0.786298066 \mathrm{~V} \\
& I_{D}=12.137009 \mathrm{~mA} \\
& \\
& I \mathrm{D}=12.137 \mathrm{~mA} \\
& V_{D}=0.7863 \mathrm{v}
\end{aligned}
$$

2) The use of graphical techniques

$$
\begin{array}{ll}
V_{S}=R_{S} I_{D}+V_{D} & \ldots ~ \\
1 \\
I_{D}=I_{S}\left(e^{\frac{V_{D}}{\eta V_{T}}}-1\right) & \ldots \ldots \ldots \ldots .2
\end{array}
$$

- Using equation 1

$$
I_{D}=-\frac{1}{R_{S}} V_{D-} \frac{V_{S}}{R_{S}}
$$

Drawing the two equations

- $\mathrm{Q}_{\text {pinim }}=\left(I_{D Q}, V_{D Q}\right)=\mathrm{Q}_{\text {wisearer poont }}$

The effect of Rs on the Qpoint

FALL -2015-2016

Diode (Models)

1) Ideal Diode Model
2) Simplified/piecewise/ knee model
3) Complete diode model

ENEE236 - Analog Electronics

Ideal Diode Model

- 1) if the diode is forward biased ==> diode is replaced by short circuit

$\mathrm{V}=0$
$\mathrm{ID}=$ Vbias/Rlimit

Ideal Diode Model

- 2) if the diode is Reverse biased ==> diode is replaced by open circuit

VD=Vbias
ID=0

Simplified / knee model

- 1) if the diode is forward biased ==> diode is replaced by a 0.7 V battery (for Si)

$\mathrm{V}=0.7 \mathrm{~V}$
$\mathrm{ID}=($ Vbias- 0.7$) /$ Rlimit

ENEE236 - Analog Electronics

Simplified/ knee model

- 2) if the diode is Reverse biased $==>$ diode is replaced by open circuit (same as ideal model)

VD=Vbias
ID=0 VD

Complete Diode model

- 1) if the diode is forward biased ==> diode is replaced by a 0.7 V battery and forward dynamic resistance

$\mathrm{VD}=0.7+\mathrm{ld} . \mathrm{rd}$
$\mathrm{ID}=($ Vbias -0.7$) /($ Rlimit + rd $)$

Complete Diode model

- 2) if the diode is Reverse biased ==> diode is replaced by open circuit // to reverse resistance rr

Diode Specification Sheets

Diode data sheets contain standard information, making crossmatching of diodes for replacement or design easier.

1. Forward Voltage (V_{F}) at a specified current and temperature
2. Maximum forward current $\left(I_{\mathrm{F}}\right)$ at a specified temperature
3. Reverse saturation current $\left(l_{\mathrm{R}}\right)$ at a specified voltage and temperature
4. Reverse voltage rating, PIV or PRV or $\mathrm{V}_{(\mathrm{BR})}$, at a specified temperature
5. Maximum power dissipation at a specified temperature
6. Capacitance levels
7. Reverse recovery time, $t_{r r}$
8. Operating temperature range

Other Types of Diodes

There are several types of diodes besides the standard $p-n$ junction diode. Three of the more common are:

Zener diodes

Light-emitting diodes

ENEE236 - Analog Electronics

Zener Diode

A Zener diode is one that is designed to safely operate in its zener region; i.e., biased at the Zener voltage $\left(\mathrm{V}_{\mathrm{Z}}\right)$.

Common zener diode voltage ratings are between 1.8 V and 200 V

The Zener diode is used for voltage regulation, details will be discussed later

Light-Emitting Diode (LED)

An LED emits light when it is forward biased, which can be in the infrared or visible spectrum.

The forward bias voltage is usually in the range of 2 V to 3 V .

ENEE236 - Analog Electronics
Example:
Find the Q-point (IDQ and VDQ)
a) Use ideal diode model
b) Use practical diode model
c) Use exact model

Solution

a) Since VA $>$ VK, diode is forward biased (ON) ==> it can be replaced by a short circuit

Vdq=Vak=0 V
IDQ $=2 \mathrm{~V} / 100 \Omega=20 \mathrm{~mA}$

b) When using practical model , diode is replaced by a 0.7 V battery

$$
\begin{aligned}
& V D Q=V A K=0.7 \mathrm{~V} \\
& I D Q=2-0.7 / 100=13 \mathrm{~mA}
\end{aligned}
$$

c) Exact solution yields
$V_{D Q}=V_{A K}=0.786 \mathrm{~V}$
$\mathrm{IDQ}=12.14 \mathrm{~mA}$
Note: If applied voltage is much higher than VAK (at least 10 times), then ideal diode model is recommended

ENEE236 - Analog Electronics
Example:
Find the Q-point
(Idq and Vdq)
Solution

It is better to convert the two loop circuit to a single loop circuit by finding Thevenin's equivalent circuit

$$
\begin{aligned}
& \mathrm{V} \text { TH }=6 \mathrm{~V} .20 \mathrm{k} /(20 \mathrm{k}+10 \mathrm{k})=4 \mathrm{~V} \\
& \mathrm{RTH}=(10 \mathrm{k}+20 \mathrm{k} / / 10 \mathrm{k})=16.67 \mathrm{k} \Omega \\
& \mathrm{~V} D Q=\mathrm{V}_{\text {AK }}=0.7 \mathrm{~V} \\
& \mathrm{IDQ}=(4-0.7) / 16.67 \mathrm{k} \Omega=0.198 \mathrm{~mA}
\end{aligned}
$$

Example: Find I,V1,V and Vo (use simplified model)

FALL -2015-2016

ENEE236 - Analog Electronics
Find I1, I2, ID2 (use practical diode model)

Solution:

Applied voltage is
suitable for forward
biasing both diodes
$\mathrm{I}=0.7 \mathrm{~V} / 3.3 \mathrm{k} \Omega$
$=0.212 \mathrm{~mA}$
$\mathrm{I}_{2}=(20-0.7-0.7) / 5.6 \mathrm{k} \Omega$
$=3.32 \mathrm{~mA}$
$l_{2}=11+\mid D 2$
ID2=|2-I $1=3.32-0.212$
$=3.11 \mathrm{~mA}$

FALL -2015-2016

